Acta Crystallographica Section A

## Foundations of Crystallography

ISSN 0108-7673

Received 11 December 2000
Accepted 8 February 2001
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

# The method of joint probability distribution functions applied to MAD techniques. The centric case 

Carmelo Giacovazzo ${ }^{\text {a,b }}$ and Dritan Siliqia ${ }^{\text {a,b,c }}$<br>${ }^{\text {a }}$ IRMEC c/o Dipartimento Geomineralogico, Università di Bari, Campus Universitario, Via Orabona 4, 70125 Bari, Italy, ${ }^{\text {b }}$ Dipartimento Geomineralogico, Università di Bari, Campus Universitario, Via Orabona 4, 70125 Bari, Italy, and ${ }^{\text {c }}$ Laboratory of X-ray Diffraction, Department of Inorganic Chemistry, Faculty of Natural Sciences, Tirana, Albania. Correspondence e-mail:<br>c.giacovazzo@area.ba.cnr.it


#### Abstract

Traditional probabilistic approaches consider MAD (multiple-wavelength anomalous-dispersion) data as a special MIR (multiple isomorphous replacement) case. The rigorous method of the joint probability distribution functions has been applied to solve the phase problem, with the assumption that the anomalous scatterers' substructure is a priori known. The probabilistic approach is able to handle measurement errors: it has been applied to symmetry-restricted phases and provides simple and efficient formulas.


## 1. Notation

$N$ : number of atoms in the unit cell. $a$ : number of anomalous scatterers in the unit cell. $n a=N-a$ : number of non-anomalous scatterers. $f_{j}=f_{j}^{0}+\Delta f_{j}+i f_{j}^{\prime \prime}=f_{j}^{\prime}+i f_{j}^{\prime \prime}$ : scattering factor of the $j$ th atom. $f^{\prime}$ is its real, $f^{\prime \prime}$ is its imaginary part. The thermal factor is included.
$F^{+}=\left|F^{+}\right| \exp \left(i \varphi^{+}\right)=F_{\mathbf{h}}=\sum_{j=1}^{N} f_{j} \exp \left(2 \pi i \mathbf{h} \mathbf{r}_{j}\right)$.
$F_{a}^{+}=\left|F_{a}^{+}\right| \exp \left(i \varphi_{a}^{+}\right)=\sum_{a} f_{j} \exp \left(2 \pi i \mathbf{h \mathbf { r } _ { j }}\right)$.
$\Sigma_{a}, \Sigma_{n a}, \Sigma_{N}=\sum\left(f_{j}^{\prime 2}+f_{j}^{\prime \prime 2}\right)$, where the summation is extended to $a, n a$ and $N$ atoms.

## 2. Introduction

MAD (multiple-wavelength anomalous dispersion) techniques (Hendrickson \& Ogata, 1997; Smith, 1997) exploit the structure-factor differences due to the variation of the anomalous-scattering factors at wavelengths around the absorption edges of some atoms in a protein crystal. Owing to the power and tunability of modern synchrotron beamlines, the MAD method has had a profound impact on modern techniques for solving the phase problem in protein crystallography. The procedure usually involves two steps:
(a) the anomalously scattering atoms are first located, which may be difficult because the partial substructure may be very complicated (Terwilliger et al., 1987; Miller et al., 1994; Sheldrick \& Gould, 1995);
(b) the phase values are determined assuming the partial structure of the anomalously scattering atoms as prior information.

Previous probabilistic approaches consider: (i) SAD (single-wavelength anomalous dispersion) and MAD data as special SIR (single isomorphous replacement) and MIR (multiple isomorphous replacement) cases, respectively. In particular, the classical Blow \& Crick (1959) expressions, integrated by Terwilliger \& Eisenberg (1987) contributions, originally derived for SIR-MIR techniques, are extended by analogy to SAD-MAD cases. (ii) The algebraic analysis of the MAD data by Karle (1980) and Hendrickson (1985) has been adapted to a probabilistic description (Pähler et al., 1990; Chiadmi et al., 1993).

In this paper, we are interested in the second stage only. In particular, we will develop below a technique described in a previous paper (Giacovazzo \& Siliqi, 2001; from now on paper I), where the joint probability distribution method has been applied to the SAD case on the assumption that the positions of all or part of the anomalous scatterers have been found via one of the current methods (see Blow \& Rossmann, 1961; North, 1965; Mathews, 1966; see also Giacovazzo, 1998, for a general description of them). In paper I, the joint probability distribution

$$
\begin{equation*}
P\left(F^{+}, F^{-} \mid F_{l a}^{+}, F_{l a}^{-}\right) \tag{1}
\end{equation*}
$$

has been calculated, from which the phase estimates

$$
P\left(\varphi^{+} \| F^{+}\left|,\left|F^{-}\right|,\left|F_{l a}^{+}\right|,\left|F_{l a}^{-}\right|\right)\right.
$$

and

$$
P\left(\varphi^{-}| | F^{+}\left|,\left|F^{-}\right|,\left|F_{l a}^{+}\right|,\left|F_{l a}^{-}\right|\right)\right.
$$

were derived. From them, the most probable value of $\varphi$ was derived by geometrical considerations. In (1), the prior information on $F_{l a}^{+}$and $F_{l a}^{-}$arises from the prior knowledge of the located anomalous scatterers.

In this paper, we will extend the method to the MAD case, with two limiting assumptions: (a) all the anomalously scattering atoms have been perfectly localized, thus $F_{a}^{+}$and $F_{a}^{-}$ (the subscript $a$ stands for 'anomalous substructure') arise from the full anomalous scatterer substructure; (b) only the symmetry-restricted phases will be considered. The two limitations will help in the reading of the paper and an easier understanding of the results, which will be expressed in a rather attractive and simple form.

By analogy with the probabilistic approach described in paper I, the positions of the non-anomalous scatterers will be the primitive random variables. Equation (I.4) now becomes

$$
\begin{equation*}
F^{+}=F_{a}^{+}+F_{n a}^{+}+\mu^{+}=F_{a}^{+}+F_{q}^{+} \tag{2}
\end{equation*}
$$

where $F_{n a}^{+}$is the structure factor corresponding to the nonanomalous scatterers (the subscript na stands for 'nonanomalous atoms', all supposed non-located). Furthermore, $\mu^{+}=|\mu|^{+} \exp \left(i \theta^{+}\right)$represents the cumulative error arising from errors in measurements: it is inglobated into $F_{q}^{+}=F_{n a}^{+}+\mu^{+}$. Equivalently, we should assume

$$
F^{-}=F_{a}^{-}+F_{n a}^{-}+\mu^{-}=F_{a}^{-}+F_{q}^{-},
$$

where $F_{q}^{-}=F_{n a}^{-}+\mu^{-}$. Since $F^{+}=F^{-}$in the centric case, from now on we will omit the superscript sign $\left(F^{+}=F^{-} \equiv F\right)$, we will assume that $\mu^{+} \approx \mu^{-} \equiv \mu$ is a real variable and that $F_{a}, F_{n a}, \mu$ are uncorrelated with each other. Then,

$$
\left.\left.\left.\langle | F\right|^{2}\right\rangle=\left|F_{a}\right|^{2}+\Sigma_{n a}+\left.\langle | \mu\right|^{2}\right\rangle
$$

As in paper I, we will normalize the structure factors with respect to the unknown part of the structure: accordingly, for centric reflections,

$$
\begin{align*}
A^{+} & =A^{-} \equiv A=\left[\sum_{j=1}^{N}\left(f_{j}^{\prime} \cos 2 \pi \mathbf{h} \mathbf{r}_{j}\right)+\mu\right] / \Sigma_{n a}^{1 / 2}  \tag{3a}\\
B^{+} & =B^{-} \equiv B=\left[\sum_{j=1}^{N}\left(f_{j}^{\prime \prime} \cos 2 \pi \mathbf{h r}_{j}\right)\right] / \Sigma_{n a}^{1 / 2}  \tag{3b}\\
E & =R \exp (i \varphi)=(A+i B)=F / \Sigma_{n a}^{1 / 2}
\end{align*}
$$

Equivalently,

$$
\begin{aligned}
E_{a} & =R_{a} \exp \left(i \varphi_{a}\right)=\left(A_{a}+i B_{a}\right)=F_{a} / \Sigma_{n a}^{1 / 2}, \\
E_{q} & =R_{q} \exp \left(i \varphi_{q}\right)=\left(A_{q}+i B_{q}\right)=F_{q} / \Sigma_{n a}^{1 / 2}, \\
\sigma^{2} & =\left\langle\mu^{2}\right\rangle / \Sigma_{n a} .
\end{aligned}
$$

The single-wavelength case will first be considered, to show how the approach may be simplified. Then the two-wavelength case will be analysed: the resulting formulas have a very simple form and are quite instructive. Then the general MAD case will be described.

## 3. The one-wavelength case: the distribution $P\left(A \mid E_{a}\right)$

Since $E^{+}=E^{-} \equiv E, E_{a}^{+}=E_{a}^{-} \equiv E_{a}$, we should study the conditional distribution $P\left(R, \varphi \mid E_{a}\right)$. On assuming that the anomalous-scatterer substructure is perfectly known, the characteristic function of the distribution $P\left(R, \varphi \mid E_{a}\right)$ is

$$
\begin{equation*}
C(u)=\exp \left[i\left(u A_{a}+v B_{a}\right)\right] \exp \left[-e\left(u^{2} / 2\right)\right] \tag{4}
\end{equation*}
$$

where $e=\left(1+\sigma_{\mu}^{2}\right)$. Then,

$$
P\left(R, \varphi \mid E_{a}\right)=\delta\left(B-B_{a}\right) L\left(A, A_{a}, e\right)
$$

where $\delta$ is the Dirac delta function and

$$
\begin{equation*}
L\left(A, A_{a}, e\right)=(2 \pi e)^{-1 / 2} \exp \left[-\left(A-A_{a}\right)^{2} / 2 e\right] \tag{5}
\end{equation*}
$$

is the Gausssian distribution of the variable $A$, centred at $A_{a}$, with variance $e$.

The distribution (5) suggests that we can emphasize the one-dimensionality of our statistical problem by replacing the pair $(R, \varphi)$ by $A$ and assuming as 'observed' value of $|A|$ the value $|A|=\left(|E|^{2}-B_{a}^{2}\right)^{1 / 2}$, where $|E|$ is the observed pseudonormalized structure factor and $B_{a}$ is calculated via the prior information on the anomalous-scatterer substructure. Then the characteristic function of the distribution $P\left(A \mid E_{a}\right)$ is simply

$$
C(u)=\exp i\left[u A_{a}-e u^{2} / 2\right]
$$

and

$$
\begin{equation*}
P\left(A \mid E_{a}\right)=L\left(A, A_{a}, e\right) \tag{6}
\end{equation*}
$$

The probability that the $\operatorname{sign} s$ of $A$ is equal to the $\operatorname{sign} s_{a}$ of $A_{a}$ is then:

$$
\begin{equation*}
P\left(s=s_{a}\right)=0.5+0.5 \tanh \left(\left|A A_{a}\right| / e\right) \tag{7}
\end{equation*}
$$

The probabilistic formula (7) suggests that: (a) the larger $e$, the less reliable the sign indications are; when there is no error in the measurements, the limiting case $e=1$ occurs (note that $e$ is never smaller than unity); (b) large values of $A_{a}$ are necessary to obtain reliable phase indications: this seldom occurs in protein crystallography because the scattering power of the anomalous-scatterer substructure is usually a very small percentage of the scattering power of the unit cell.

Multiple-wavelength experiments are then necessary to provide additional information for a more fruitful statistical phase assignment.

## 4. The two-wavelength case: the distribution $P\left(\boldsymbol{A}_{1}, \boldsymbol{A}_{2} \mid \boldsymbol{E}_{a 1}, \boldsymbol{E}_{\mathrm{a} 2}\right)$

According to $\S 3$, we will derive the joint probability distribution $P\left(A_{1}, A_{2} \mid A_{a 1}, A_{a 2}\right)$, where the subscripts 1 and 2 indicate that the variables are referred to the wavelengths $\lambda_{1}$ and $\lambda_{2}$, respectively. The characteristic function is

$$
\begin{align*}
C\left(u_{1}, u_{2}\right)= & \exp \left[i\left(u_{1} A_{a 1}+u_{2} A_{a 2}\right)\right] \\
& \times \exp \left[-\left(e_{1} u_{1}^{2}+e_{2} u_{2}^{2}+2 u_{1} u_{2}\right) / 2\right] \tag{8}
\end{align*}
$$

where $u_{1}$ and $u_{2}$ are carrying variables associated with $A_{1}$ and $A_{2}$, respectively.

Equation (8) has been obtained under the reasonable assumption that measurement errors at the two wavelengths are uncorrelated. The distribution $P\left(A_{1}, A_{2} \mid A_{a 1}, A_{a 2}\right)$ is readily obtained as the Fourier transform of (8); we have

$$
\begin{align*}
& P\left(A_{1}, A_{2} \mid A_{a 1}, A_{a 2}\right) \\
& \quad=L^{-1} \exp \left\{-1 / 2 k^{-1}\left[e_{2}\left(A_{1}-A_{a 1}\right)^{2}\right.\right. \\
& \left.\left.\quad+e_{1}\left(A_{2}-A_{a 2}\right)^{2}-2\left(A_{1}-A_{a 1}\right)\left(A_{2}-A_{a 2}\right)\right]\right\} \tag{9}
\end{align*}
$$

where $L$ is a normalizing factor and $k=\left(e_{1} e_{2}-1\right)$.
A more instructive form of (9) is obtained by introducing the relations

$$
e_{1}=\left(1+\sigma_{1}^{2}\right), \quad e_{2}=\left(1+\sigma_{2}^{2}\right)
$$

We have

$$
\begin{align*}
P\left(A_{1}, A_{2} \mid A_{a 1}, A_{a 2}\right)= & L^{-1} \exp \left\{-1 / 2 k^{-1}\left[\left(A_{1}-A_{a 1}\right)\right.\right. \\
& \left.-\left(A_{2}-A_{a 2}\right)\right]^{2}-1 / 2 k^{-1}\left[\sigma_{2}^{2}\left(A_{1}-A_{a 1}\right)^{2}\right. \\
& \left.\left.+\sigma_{1}^{2}\left(A_{2}-A_{a 2}\right)^{2}\right]\right\} \tag{10}
\end{align*}
$$

where $k=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{1}^{2} \sigma_{2}^{2}$.
Equation (10) suggests the following:
(a) The first term in the exponential is maximized when $A_{q 1}=A_{1}-A_{a 1}$ has the same sign and modulus as $A_{q 2}=A_{2}-A_{a 2}$. The reader will find this obvious if he or she considers that $A_{q 1}$ and $A_{q 2}$ do not depend on the anomalous scattering and therefore they are expected to be equal. The formula confirms this expectation and, at the same time, uses the above condition as a lack-of-closure criterion.
(b) The second term in the exponential supports the tendency of $A_{1}$ and $A_{2}$ to have the same signs as $A_{a 1}$ and $A_{a 2}$, respectively (see $\S 3$ ): the tendency is regulated by the error parameters $\sigma_{2}^{2}$ and $\sigma_{1}^{2}$, respectively. Since $\sigma_{2}^{2}$ and $\sigma_{1}^{2}$ are usually smaller than unity, the second term in the exponential is usually negligible with respect to the first one. Accordingly, the additional wavelength dispersion data constitute a valuable source of information with respect to the SAS case.
(c) Formula (10) supports the expectation that the difference $\left(A_{1}-A_{a 1}\right)^{2}$ plays a more important role if the error on $\left(A_{2}-A_{a 2}\right)^{2}$ (say $\left.\sigma_{2}^{2}\right)$ is larger than $\sigma_{1}^{2}$. The reciprocal is also true.
(d) Since

$$
\begin{equation*}
\left[\left(A_{1}-A_{a 1}\right)-\left(A_{2}-A_{a 2}\right)\right]^{2}=\left[\left(A_{1}-A_{2}\right)-\left(A_{a 1}-A_{a 2}\right)\right]^{2} \tag{11}
\end{equation*}
$$

the distribution (10) clearly indicates the possible experimental reasons for MAD failures. Indeed, the size of the term (11) critically depends on the experimental errors related to the estimates of the differences $\left(\left|A_{1}\right|-\left|A_{2}\right|\right)$ and $\left(\left|A_{a 1}\right|-\left|A_{a 2}\right|\right)$, both of which are quite small quantities.

Let $s_{1}, s_{2}, s_{a 1}, s_{a 2}$ be the signs of $A_{1}, A_{2}, A_{a 1}, A_{a 2}$, respectively. The sign probabilities can be derived by first omitting from (10) the terms that are insensitive to the signs:

$$
\begin{align*}
P\left(A_{1}, A_{2} \mid A_{a 1}, A_{a 2}\right) \approx & L^{-1} \exp \left\{k ^ { - 1 } \left[A_{1} A_{2}+\left(A_{1}-A_{2}\right)\right.\right. \\
& \left.\left.\times\left(A_{a 1}-A_{a 2}\right)+\sigma_{2}^{2} A_{1} A_{a 1}+\sigma_{1}^{2} A_{2} A_{a 2}\right]\right\}, \tag{12}
\end{align*}
$$

then the marginal probability

$$
P\left(s_{1} \mid A_{a 1}, A_{a 2}\right)=\sum_{s_{2}= \pm 1} P\left(s_{1}, s_{2} \mid A_{a 1}, A_{a 2}\right)
$$

is derived, and finally the conclusive expression is obtained:

$$
\begin{align*}
& P\left(s_{1}=s_{a 1} \mid A_{a 1}, A_{a 2}\right) \\
& \quad=\left[1+P\left(s_{1}=-s_{a 1} \mid A_{a 1}, A_{a 2}\right) / P\left(s_{1}=s_{a 1} \mid A_{a 1}, A_{a 2}\right)\right]^{-1} \tag{13}
\end{align*}
$$

A simpler but robust expression may be obtained by observing that $A_{1}$ and $A_{2}$ will mostly have the same sign $s_{1}$. If the probability that they have opposite sign is considered vanishing, the product $\left(A_{1} A_{2}\right)$ can be omitted from (12).

Then,

$$
\left(A_{1}-A_{2}\right)\left(A_{a 1}-A_{a 2}\right)=s_{1}\left(\left|A_{1}\right|-\left|A_{2}\right|\right)\left(A_{a 1}-A_{a 2}\right)
$$

and

$$
\begin{align*}
P\left(s=s_{a 1} \mid A_{a 1}, A_{a 2}\right) \approx & 0.5+0.5 \tanh \left\{k ^ { - 1 } \left[s_{1} \Delta_{12}\left(A_{a 1}-A_{a 2}\right)\right.\right. \\
& \left.\left.+\sigma_{2}^{2}\left|A_{1} A_{a 1}\right|\right]\right\} \tag{14a}
\end{align*}
$$

where

$$
\Delta_{12}=\left|A_{1}\right|-\left|A_{2}\right|
$$

Equations (13) and (14a) are the conclusive formulas for the two-wavelength case.

As before underlined, the first term in the tanh argument is more important than the second, owing to the usually quite small value of $\sigma_{1}^{2}$ (and $\sigma_{2}^{2}$ ). If $\Delta f_{1}^{\prime}$ and $\Delta f_{2}^{\prime}$ have the same sign then

$$
A_{a 1}-A_{a 2}=s_{a 1}\left(\left|A_{a 1}\right|-\left|A_{a 2}\right|\right)=s_{a 1} \Delta_{a 12}
$$

and (14a) reduces to the simpler expression

$$
\begin{align*}
P\left(s_{1}=s_{a 1} \mid A_{a 1}, A_{a 2}\right) \approx & 0.5+0.5 \tanh \left\{k ^ { - 1 } \left[\Delta_{12} \Delta_{a 12}\right.\right. \\
& \left.\left.+\sigma_{2}^{2}\left(\left|A_{1} A_{a 1}\right|\right)\right]\right\} \tag{14b}
\end{align*}
$$

which mostly relies on the sign of the product $\Delta_{12} \Delta_{a 12}$.
Usually, $\quad \sigma_{i}^{2} \ll 1$ : accordingly, we can introduce the approximation

$$
K=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{1}^{2} \sigma_{2}^{2} \approx \sigma_{1}^{2}+\sigma_{2}^{2}
$$

and simply express ( $14 b$ ) in terms of structure factors:

$$
\begin{aligned}
P\left(s_{1}=s_{a 1} \mid A_{a 1}^{F}, A_{a 2}^{F}\right) \approx & 0.5+0.5 \tanh \left\{\left[\left\langle\mu_{1}^{2}\right\rangle+\left\langle\mu_{2}^{2}\right\rangle\right]^{-1}\right. \\
& \left.\times\left[\Delta_{12}^{F} \Delta_{a 12}^{F}+\left\langle\mu_{2}^{2}\right\rangle\left|A_{a 1}^{F} A_{a 2}^{F}\right| / \Sigma_{N}\right]\right\}
\end{aligned}
$$

where $\Delta_{12}^{F}=\left|A_{1}^{F}\right|-\left|A_{2}^{F}\right|, \Delta_{a 12}^{F}=\left|A_{a 1}^{F}\right|-\left|A_{a 2}^{F}\right|$ and $A_{i}^{F}, A_{a i}^{F}$ are the real components of $F_{i}$ and $F_{a i}$.

Since the second term of the tanh arguments is often negligible with respect to the first one, we obtain
$P\left(s_{1} \approx s_{a 1} \mid A_{a 1}^{F}, A_{a 2}^{F}\right) \approx 0.5+0.5 \tanh \left\{\left[\left\langle\mu_{1}^{2}\right\rangle+\left\langle\mu_{2}^{2}\right\rangle\right]^{-1} \Delta_{12}^{F} \Delta_{a 12}^{F}\right\}$.
Some didactical cases are illustrated in Appendix $A$.

## 5. The $n$-wavelength case: the distribution <br> $P\left(A_{1}, \ldots, A_{n} \mid E_{a 1}, \ldots, E_{a n}\right)$

The procedure described in $\S 4$ is now extended to the $n$-wavelength case. The characteristic function of $P\left(A_{1}, \ldots, A_{n} \mid E_{a 1}, \ldots, E_{a n}\right)$ is:

$$
\begin{aligned}
C\left(u_{1}, \ldots, u_{n}\right)= & \exp \left[i\left(u_{1} A_{a 1}+\ldots+u_{n} A_{n}\right)\right] \\
& \times \exp \left[-\left(\sum_{i} e_{i} u_{i}^{2}+2 \sum_{i<j} u_{i} u_{j}\right) / 2\right] .
\end{aligned}
$$

Then,

$$
\begin{align*}
& P\left(A_{1}, \ldots, A_{n} \mid E_{a 1}, \ldots, E_{a n}\right) \\
& \quad=(2 \pi)^{-n} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \exp \left\{-i\left[\sum_{i} u_{i}\left(A_{i}-A_{a i}\right)\right]\right. \\
& \left.\quad-(1 / 2)\left[\sum_{i} e_{i} u_{i}^{2}+2 \sum_{i<j} u_{i} u_{j}\right]\right\} . \tag{15}
\end{align*}
$$

Equation (15) may be rewritten in a shorter form as

$$
P\left(\mathbf{A} \mid \mathbf{E}_{a}\right)=(2 \pi)^{-n} \int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} \exp (-i \overline{\mathbf{T}} \mathbf{U}-1 / 2 \overline{\mathbf{U}} \mathbf{K} \mathbf{U})
$$

where

$$
\begin{aligned}
\overline{\mathbf{T}} & =\left[\left(A_{1}-A_{a 1}\right), \ldots,\left(A_{n}-A_{a n}\right)\right] \\
\overline{\mathbf{U}} & =\left[u_{1}, \ldots, u_{n}\right], \\
\mathbf{K} & =\left|\begin{array}{cccc}
e_{1} & 1 & \ldots & 1 \\
1 & e_{2} & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \ldots & e_{n}
\end{array}\right|
\end{aligned}
$$

Then,

$$
\begin{equation*}
P\left(\mathbf{A} \mid \mathbf{E}_{a}\right)=(2 \pi)^{-n / 2}[\operatorname{det}(\mathbf{K})]^{-1 / 2} \exp \left(-1 / 2 \overline{\mathbf{T}} \mathbf{K}^{-1} \mathbf{T}\right) \tag{16}
\end{equation*}
$$

or, in a more explicit form,

$$
\begin{align*}
P\left(\mathbf{A} \mid \mathbf{E}_{a}\right)= & (2 \pi)^{-n / 2}[\operatorname{det}(\mathbf{K})]^{-1 / 2} \exp \left\{-1 / 2 \sum_{i} \lambda_{i i}\left(A_{i}-A_{a i}\right)^{2}\right. \\
& \left.+2 \sum_{i<j} \lambda_{i j}\left(A_{i}-A_{a i}\right)\left(A_{j}-A_{a j}\right)\right\} \tag{17}
\end{align*}
$$

where the $\lambda_{i j}$ are the elements of the matrix $\mathbf{K}^{-1}$. The value of $\operatorname{det}(\mathbf{K})$ may be estimated by the relation

$$
\begin{gathered}
\operatorname{det}\left|\begin{array}{cccc}
1+d_{1} & 1 & \ldots & 1 \\
1 & 1+d_{2} & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & \ldots & 1+d_{n}
\end{array}\right| \\
=d_{1} d_{2} \ldots d_{n}\left[1+\sum_{i=1}^{n}\left(1 / d_{i}\right)\right]
\end{gathered}
$$

Accordingly, we have

$$
\begin{equation*}
\operatorname{det}(\mathbf{K})=\sigma_{1}^{2} \sigma_{2}^{2} \ldots \sigma_{n}^{2}\left[1+\sum_{i=1}^{n}\left(1 / \sigma_{i}^{2}\right)\right] \tag{18}
\end{equation*}
$$

It is easily verified that (6) and (9) are special cases of (17). A form generalizing (10) may be obtained after some algebraic rearrangement of the terms in (17). We obtain:

$$
\begin{align*}
P\left(\mathbf{A} \mid \mathbf{E}_{a}\right)= & (2 \pi)^{-n / 2}[\operatorname{det}(\mathbf{K})]^{-1 / 2} \exp \left\{-1 / 2 \sum_{i<j} \lambda_{i j}\left[\left(A_{i}-A_{j}\right)\right.\right. \\
& \left.\left.-\left(A_{a i}-A_{a j}\right)\right]^{2}-1 / 2 \sum_{i} R_{i}\left(A_{i}-A_{a i}\right)^{2}\right\} \tag{19}
\end{align*}
$$

where $R_{i}=\sum_{i=1}^{n} \lambda_{i j}$.
The sign probabilities may be derived as in $\S 4$. If we assume that all the $A_{i}$ 's have the same sign $s_{1}$, then

$$
\left[\left(A_{i}-A_{j}\right)\left(A_{a i}-A_{a j}\right)\right]=\left[s_{1} \Delta_{i j}\left(A_{a i}-A_{a j}\right)\right],
$$

where $\Delta_{i j}=\left|A_{i}\right|-\left|A_{j}\right|$ and

$$
\begin{align*}
P\left(s_{1}=s_{a 1} \mid \mathbf{E}_{a}\right)= & 0.5+0.5 \tanh \left\{-\sum_{j=2}^{n} \lambda_{1 j}\left[s_{1} \Delta_{1 j}\left(A_{a 1}-A_{a j}\right)\right]\right. \\
& \left.+R_{1}\left|A_{1} A_{a 1}\right|\right\} \tag{20}
\end{align*}
$$

If the $\Delta f_{j}^{\prime}$ have the same sign, (20) reduces to

$$
\begin{align*}
P\left(s_{1}=s_{a 1} \mid \mathbf{E}_{a}\right)= & 0.5+0.5 \tanh \left\{-\sum_{j=2}^{n} \lambda_{1 j}\left[\Delta_{1 j} \Delta_{a 1 j}\right]\right. \\
& \left.+R_{1}\left|A_{1} A_{a 1}\right|\right\} \tag{21}
\end{align*}
$$

where $\Delta_{a 1 j}=\left|A_{a 1}\right|-\left|A_{a j}\right|$.
We now give the explicit expressions for the $\lambda_{1 j}$ elements:

$$
\begin{align*}
\lambda_{1 j} & =-\left[\prod_{p=2, p \neq j}^{n}\left(\sigma_{p}^{2}\right)\right] /[\operatorname{det}(\mathbf{K})] \\
& =-\left\{\sigma_{1}^{2} \sigma_{j}^{2}\left[1+\sum_{i=1}^{n}\left(1 / \sigma_{i}^{2}\right)\right]\right\}^{-1} \text { for } j \neq 1,  \tag{22}\\
\lambda_{11} & =\left[\prod_{p=2}^{n}\left(\sigma_{p}^{2}\right)\right] /[\operatorname{det}(\mathbf{K})]-\sum_{j=2}^{n} \lambda_{1 j}, \\
R_{1} & =\left[\prod_{p=2}^{n}\left(\sigma_{p}^{2}\right)\right] /[\operatorname{det}(\mathbf{K})]=\left\{\sigma_{1}^{2}\left[1+\sum_{i=1}^{n}\left(1 / \sigma_{i}^{2}\right)\right]\right\}^{-1} . \tag{23}
\end{align*}
$$

We note that, according to (23), $\lambda_{1 j}$ will have a small modulus if $\sigma_{1}^{2}$ and $\sigma_{j}^{2}$ are large enough (i.e. unreliable measurements). Similarly, according to (23), a large value of $\sigma_{1}^{2}$ would weaken the probability of the sign relationship between $A_{1}$ and $A_{a 1}$.

For $n=3,4$ the $\lambda_{1 j}$ 's are: $n=3$

$$
\begin{aligned}
\operatorname{det}(\mathbf{K}) & =\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}^{2}+\sigma_{1}^{2} \sigma_{2}^{2}+\sigma_{1}^{2} \sigma_{3}^{2}+\sigma_{2}^{2} \sigma_{3}^{2} \\
\lambda_{11} & =\left(\sigma_{2}^{2} \sigma_{3}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}\right) / \operatorname{det}(\mathbf{K}) \\
\lambda_{22} & =\left(\sigma_{1}^{2} \sigma_{3}^{2}+\sigma_{1}^{2}+\sigma_{3}^{2}\right) / \operatorname{det}(\mathbf{K}) \\
\lambda_{33} & =\left(\sigma_{1}^{2} \sigma_{2}^{2}+\sigma_{1}^{2}+\sigma_{2}^{2}\right) / \operatorname{det}(\mathbf{K}) \\
\lambda_{12} & =-\sigma_{3}^{2} / \operatorname{det}(\mathbf{K}) \\
\lambda_{13} & =-\sigma_{2}^{2} / \operatorname{det}(\mathbf{K}) \\
\lambda_{23} & =-\sigma_{1}^{2} / \operatorname{det}(\mathbf{K})
\end{aligned}
$$

Table 1
Expected $\Delta f^{\prime}$ and $f^{\prime \prime}$ values for each chosen $\lambda$ value.

| $\lambda(\AA)$ | $\Delta f^{\prime}$ | $f^{\prime \prime}$ |
| :--- | :--- | :--- |
| 1.1271 | -1.805 | 0.646 |
| 0.9793 | -8.582 | 3.843 |
| 0.9791 | -7.663 | 3.841 |
| 0.9465 | -2.618 | 3.578 |

$$
\begin{aligned}
& n=4 \\
& \qquad \begin{aligned}
\operatorname{det}(\mathbf{K})= & \sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}^{2} \sigma_{4}^{2}+\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}^{2}+\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{4}^{2}+\sigma_{1}^{2} \sigma_{3}^{2} \sigma_{4}^{2}+\sigma_{2}^{2} \sigma_{3}^{2} \sigma_{4}^{2} \\
\lambda_{11}= & \left(\sigma_{2}^{2} \sigma_{3}^{2} \sigma_{4}^{2}+\sigma_{2}^{2} \sigma_{3}^{2}+\sigma_{2}^{2} \sigma_{4}^{2}+\sigma_{3}^{2} \sigma_{4}^{2}\right) / \operatorname{det}(\mathbf{K}) \\
\lambda_{22}= & \left(\sigma_{1}^{2} \sigma_{3}^{2} \sigma_{4}^{2}+\sigma_{1}^{2} \sigma_{3}^{2}+\sigma_{1}^{2} \sigma_{4}^{2}+\sigma_{3}^{2} \sigma_{4}^{2}\right) / \operatorname{det}(\mathbf{K}) \\
& \vdots \\
\lambda_{12}= & -\sigma_{3}^{2} \sigma_{4}^{2} / \operatorname{det}(\mathbf{K}) \\
\lambda_{13}= & -\sigma_{2}^{2} \sigma_{4}^{2} / \operatorname{det}(\mathbf{K})
\end{aligned}
\end{aligned}
$$

## 6. The estimate of symmetry restricted phases

The formulas so far derived have been explicitly obtained for the case $P \overline{1}$, but they may handle reflections with symmetryrestricted phase values different from $(0, \pi)$ without any special modification. For example, let us suppose that the allowed phase values are $(+\pi / 2,-\pi / 2)$. In this case, $A$ is the component along the imaginary direction in the Gaussian plane. We still retain the $A$ and $B$ definitions of $\S$ I. 3 and we can apply (20) provided the 'observed' value of $A$ is $|A|=\left(|E|^{2}-\left|B_{a}\right|^{2}\right)^{1 / 2}$.

## 7. Experimental tests

To check the correctness of our mathematical approach, we have applied the theory so far developed to the calculated (without error) data of 1SRV (Walsh et al., 1999), space group $C 222_{1}, a=63.470, b=65.960, c=75.030 \AA$. Multiwavelength data were collected up to $1.70 \AA$ resolution. The expected $\Delta f^{\prime}$ and $f^{\prime \prime}$ values for each chosen $\lambda$ are shown in Table 1. Structure factors were calculated for the 958 reflections with restricted phase values. To avoid singularities in (14b) and (21), we assumed $e=1+\left(0.05\left|E_{\text {calc }}\right|^{2}\right)$. In Table 2, we use $\lambda_{1}$ and $\lambda_{2}$ wavelengths. For each threshold value, we give the number of reflections ( Nr ) for which $G>$ ARG and the percentage (\%) of the correct sign estimates. $G$ is the modulus of the tanh argument in (14b). The two-wavelength (ideal) case completely solves the phase problem. The errors at very small values of $G$ are exclusively rounding errors of the calculations. The reader will note that the percentage of the correct sign estimates does not depend on the value of $G$. This is due to: (a) calculated data are used; $(b)$ an unrealistic weight is employed.

The simultaneous use of the four wavelengths has only the effect of increasing the expected reliability of the phase esti-

Table 2
1SRV calculated data, centric reflections: number of reflections ( Nr ) for which $G>$ ARG and percentage (\%) of the correct sign estimates.
$G$ is the modulus of the tanh argument in equation (14b) when the twowavelength case is checked.

| ARG | Nr | $\%$ |
| :---: | :---: | :---: |
| 0.00 | 958 | 98.2 |
| 0.33 | 321 | 99.4 |
| 2.00 | 154 | 98.7 |
| 4.00 | 103 | 99.1 |
| 7.0 | 71 | 98.6 |
| 10 | 57 | 98.3 |

mates (that is the $G$ value): for shortness, the obvious result is not shown.

## 8. Conclusions

A new probabilistic approach for handling the MAD case is described, aiming at phasing structure factors under the assumption that the anomalous-scatterer positions are entirely known. The approach uses the technique of the joint probability distribution functions and provides simple and


Figure 1
(a) One-wavelength centric case. The sign of $A_{1}$ is not defined by the prior knowledge of $A_{a 1} ;(b),(c),(d),(e)$ Four specific cases for a second wavelength.
instructive formulas. The approach is quite general: it may also be used to treat the case in which errors at different wavelengths are correlated (Terwillinger \& Berendzen, 1997). This only requires suitable coefficients in the Gaussian component of the characteristic function [see equation (8) for the twowavelength case].

Our next theoretical step will generalize the results for the non-centrosymmetrical case. Since the accuracy of the phase estimates depends on the accuracy of $A_{a}$ and $B_{a}$, the practical applications of our approach would require the integration of our theoretical results with some of the current computer programs for defining and refining the anomalous-scatterer substructure.

## APPENDIX A

In this Appendix, some geometrical considerations supporting the results obtained via our probabilistic approach are described.

The one-wavelength centric case may be summarized as in Fig. 1(a). $A_{1}$ is a non-directional segment of which we want to determine the correct orientation, $\mathbf{A}_{a 1}$ is a vector with known modulus and direction. Two possible solutions are available for $\mathbf{A}_{q 1}$, with opposite directions (the restraint that $\left|\mathbf{A}_{q}+\mathbf{A}_{a 1}\right|$ must be equal to $\left|\mathbf{A}_{1}\right|$ holds). Consequently, both the alternatives are allowed for $A_{1}$.

The sections $(b),(c),(d),(e)$ of Fig. 1 represent four cases for a second wavelength. We assume that $\Delta f_{1}^{\prime} \Delta f_{2}^{\prime}>0$ or, in other words, that $\mathbf{A}_{a 1}$ has the same sign as $\mathbf{A}_{a 2}$. Each of the four cases is marked by specific relations between the moduli
$\left|\mathbf{A}_{j}\right|$ and $\left|\mathbf{A}_{a j}\right|$. If the $\lambda_{1}$ and the $\lambda_{2}$ cases are combined, a unique solution is found, owing to the necessity that $\mathbf{A}_{q 1}=\mathbf{A}_{q 2}$ in modulus and sign. This is in perfect agreement with the main term of the tanh argument in equation (14b).

## References

Blow, D. M. \& Crick, F. H. C. (1959). Acta Cryst. 12, 794-802.
Blow, D. M. \& Rossmann, M. G. (1961). Acta Cryst. 14, 1195-1202.
Chiadmi, M., Kahn, R., De La Fortelle, E. \& Fourme, R. (1993). Acta Cryst. D49, 522-529.
Giacovazzo, C. (1998). Direct Phasing in Crystallography. Oxford University Press.
Giacovazzo, C. \& Siliqi, D. (2001). Acta Cryst. A57, 40-46.
Hendrickson, W. A. (1985). Trans. Am. Crystallogr. Assoc. 21, 11-21.
Hendrickson, W. A. \& Ogata, C. M. (1997). Methods Enzymol. 276, 494-523.
Karle, J. (1980). Int. J. Quantum Chem. Symp. 7, 357-367.
Mathews, B. W. (1966). Acta Cryst. 20, 82-86.
Miller, R., Gallo, S., Khalak, H. G. \& Weeks, C. M. (1994). J. Appl. Cryst. 27, 613-621.
North, A. C. T. (1965). Acta Cryst. 18, 212-216.
Pähler, A., Smith, J. L. \& Hendrickson, W. A. (1990). Acta Cryst. A46, 537-540.
Sheldrick, G. M. \& Gould, R. G. (1995). Acta Cryst. B51, 423-431.
Smith, J. L. (1997). Proceedings of the CCP4 Study Weekend. Recent Advances in Phasing, edited by K. S. Wilson, G. Davies, A. W. Ashton \& S. Bailey, pp. 25-39. Warrington: Daresbury Laboratory. Terwilliger, T. C. \& Berendzen, J. (1997). Acta Cryst. D53, 571-579.
Terwilliger, T. C. \& Eisenberg, D. (1987). Acta Cryst. A43, 6-13.
Terwilliger, T. C., Kim, S.-H. \& Eisenberg, D. (1987). Acta Cryst. A43, 1-5.
Walsh, M. A., Dementieva, I., Evans, G., Sanishvili, R. \& Joachimiak, A. (1999). Acta Cryst. D55, 1168-1173.

