
research papers

414 Giacovazzo and Siliqi � Joint probability distributions Acta Cryst. (2001). A57, 414±419

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 11 December 2000

Accepted 8 February 2001

# 2001 International Union of Crystallography

Printed in Great Britain ± all rights reserved

The method of joint probability distribution
functions applied to MAD techniques.
The centric case

Carmelo Giacovazzoa,b* and Dritan Siliqia,b,c

aIRMEC c/o Dipartimento Geomineralogico, UniversitaÁ di Bari, Campus Universitario, Via Orabona

4, 70125 Bari, Italy, bDipartimento Geomineralogico, UniversitaÁ di Bari, Campus Universitario, Via

Orabona 4, 70125 Bari, Italy, and cLaboratory of X-ray Diffraction, Department of Inorganic

Chemistry, Faculty of Natural Sciences, Tirana, Albania. Correspondence e-mail:

c.giacovazzo@area.ba.cnr.it

Traditional probabilistic approaches consider MAD (multiple-wavelength

anomalous-dispersion) data as a special MIR (multiple isomorphous replace-

ment) case. The rigorous method of the joint probability distribution functions

has been applied to solve the phase problem, with the assumption that the

anomalous scatterers' substructure is a priori known. The probabilistic approach

is able to handle measurement errors: it has been applied to symmetry-restricted

phases and provides simple and ef®cient formulas.

1. Notation

N: number of atoms in the unit cell.

a: number of anomalous scatterers in the unit cell.

na � N ÿ a: number of non-anomalous scatterers.

fj � f 0
j ��fj � if 00j � f 0j � if 00j : scattering factor of the jth atom.

f 0 is its real, f 00 is its imaginary part. The thermal factor is

included.

F� � jF�j exp�i'�� � Fh �
PN
j�1

fj exp�2�ihrj�:

F�a � jF�a j exp�i'�a � �
P

a

fj exp�2�ihrj�:

�a;�na;�N �
P �f 0 2j � f 00 2j �, where the summation is

extended to a, na and N atoms.

2. Introduction

MAD (multiple-wavelength anomalous dispersion) tech-

niques (Hendrickson & Ogata, 1997; Smith, 1997) exploit the

structure-factor differences due to the variation of the

anomalous-scattering factors at wavelengths around the

absorption edges of some atoms in a protein crystal. Owing to

the power and tunability of modern synchrotron beamlines,

the MAD method has had a profound impact on modern

techniques for solving the phase problem in protein crystal-

lography. The procedure usually involves two steps:

(a) the anomalously scattering atoms are ®rst located, which

may be dif®cult because the partial substructure may be very

complicated (Terwilliger et al., 1987; Miller et al., 1994; Shel-

drick & Gould, 1995);

(b) the phase values are determined assuming the partial

structure of the anomalously scattering atoms as prior infor-

mation.

Previous probabilistic approaches consider: (i) SAD

(single-wavelength anomalous dispersion) and MAD data as

special SIR (single isomorphous replacement) and MIR

(multiple isomorphous replacement) cases, respectively. In

particular, the classical Blow & Crick (1959) expressions,

integrated by Terwilliger & Eisenberg (1987) contributions,

originally derived for SIR±MIR techniques, are extended by

analogy to SAD±MAD cases. (ii) The algebraic analysis of the

MAD data by Karle (1980) and Hendrickson (1985) has been

adapted to a probabilistic description (PaÈhler et al., 1990;

Chiadmi et al., 1993).

In this paper, we are interested in the second stage only. In

particular, we will develop below a technique described in a

previous paper (Giacovazzo & Siliqi, 2001; from now on paper

I), where the joint probability distribution method has been

applied to the SAD case on the assumption that the positions

of all or part of the anomalous scatterers have been found via

one of the current methods (see Blow & Rossmann, 1961;

North, 1965; Mathews, 1966; see also Giacovazzo, 1998, for a

general description of them). In paper I, the joint probability

distribution

P�F�;FÿjF�la ;Fÿla � �1�
has been calculated, from which the phase estimates

P�'�jjF�j; jFÿj; jF�la j; jFÿla j�
and

P�'ÿjjF�j; jFÿj; jF�la j; jFÿla j�
were derived. From them, the most probable value of ' was

derived by geometrical considerations. In (1), the prior

information on F�la and Fÿla arises from the prior knowledge of

the located anomalous scatterers.



In this paper, we will extend the method to the MAD case,

with two limiting assumptions: (a) all the anomalously scat-

tering atoms have been perfectly localized, thus F�a and Fÿa
(the subscript a stands for `anomalous substructure') arise

from the full anomalous scatterer substructure; (b) only the

symmetry-restricted phases will be considered. The two

limitations will help in the reading of the paper and an easier

understanding of the results, which will be expressed in a

rather attractive and simple form.

By analogy with the probabilistic approach described in

paper I, the positions of the non-anomalous scatterers will be

the primitive random variables. Equation (I.4) now becomes

F� � F�a � F�na � �� � F�a � F�q ; �2�
where F�na is the structure factor corresponding to the non-

anomalous scatterers (the subscript na stands for `non-

anomalous atoms', all supposed non-located). Furthermore,

�� � j�j� exp�i��� represents the cumulative error arising

from errors in measurements: it is inglobated into

F�q � F�na � ��. Equivalently, we should assume

Fÿ � Fÿa � Fÿna � �ÿ � Fÿa � Fÿq ;

where Fÿq � Fÿna � �ÿ. Since F� � Fÿ in the centric case,

from now on we will omit the superscript sign (F� � Fÿ � F),

we will assume that �� � �ÿ � � is a real variable and that

Fa , Fna, � are uncorrelated with each other. Then,

hjFj2i � jFaj2 ��na � hj�j2i:
As in paper I, we will normalize the structure factors with

respect to the unknown part of the structure: accordingly, for

centric re¯ections,

A� � Aÿ � A � PN
j�1

f 0j cos 2�hrj

ÿ �� �" #�
�1=2

na ; �3a�

B� � Bÿ � B � PN
j�1

f 00j cos 2�hrj

ÿ �" #�
�1=2

na ; �3b�

E � R exp i'� � � A� iB� � � F=�1=2
na :

Equivalently,

Ea � Ra exp�i'a� � �Aa � iBa� � Fa=�
1=2
na ;

Eq � Rq exp�i'q� � �Aq � iBq� � Fq=�
1=2
na ;

�2 � h�2i=�na:

The single-wavelength case will ®rst be considered, to show

how the approach may be simpli®ed. Then the two-wavelength

case will be analysed: the resulting formulas have a very

simple form and are quite instructive. Then the general MAD

case will be described.

3. The one-wavelength case: the distribution P(A|Ea)

Since E� � Eÿ � E, E�a � Eÿa � Ea, we should study the

conditional distribution P�R; 'jEa�. On assuming that the

anomalous-scatterer substructure is perfectly known, the

characteristic function of the distribution P�R; 'jEa� is

C�u� � exp�i�uAa � vBa�� exp�ÿe�u2=2��; �4�
where e � �1� �2

��. Then,

P�R; 'jEa� � ��Bÿ Ba�L�A;Aa; e�;
where � is the Dirac delta function and

L�A;Aa; e� � �2�e�ÿ1=2 exp�ÿ�Aÿ Aa�2=2e� �5�
is the Gausssian distribution of the variable A, centred at Aa,

with variance e.

The distribution (5) suggests that we can emphasize the

one-dimensionality of our statistical problem by replacing the

pair (R, ') by A and assuming as `observed' value of |A| the

value jAj � �jEj2 ÿ B2
a�1=2, where |E| is the observed pseudo-

normalized structure factor and Ba is calculated via the prior

information on the anomalous-scatterer substructure. Then

the characteristic function of the distribution P(A|Ea) is simply

C�u� � exp i�uAa ÿ eu2=2�
and

P�AjEa� � L�A;Aa; e�: �6�
The probability that the sign s of A is equal to the sign sa of Aa

is then:

P�s � sa� � 0:5� 0:5 tanh�jAAaj=e�: �7�
The probabilistic formula (7) suggests that: (a) the larger e, the

less reliable the sign indications are; when there is no error in

the measurements, the limiting case e � 1 occurs (note that e is

never smaller than unity); (b) large values of Aa are necessary

to obtain reliable phase indications: this seldom occurs in

protein crystallography because the scattering power of the

anomalous-scatterer substructure is usually a very small

percentage of the scattering power of the unit cell.

Multiple-wavelength experiments are then necessary to

provide additional information for a more fruitful statistical

phase assignment.

4. The two-wavelength case: the distribution
P(A1, A2|Ea1, Ea2)

According to x3, we will derive the joint probability distribu-

tion P(A1, A2|Aa1, Aa2), where the subscripts 1 and 2 indicate

that the variables are referred to the wavelengths �1 and �2,

respectively. The characteristic function is

C�u1; u2� � exp�i�u1Aa1 � u2Aa2��
� exp�ÿ�e1u2

1 � e2u2
2 � 2u1u2�=2�; �8�

where u1 and u2 are carrying variables associated with A1 and

A2, respectively.

Equation (8) has been obtained under the reasonable

assumption that measurement errors at the two wavelengths

are uncorrelated. The distribution P(A1, A2|Aa1, Aa2) is

readily obtained as the Fourier transform of (8); we have
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P�A1;A2jAa1;Aa2�
� Lÿ1 expfÿ1=2kÿ1�e2�A1 ÿ Aa1�2
� e1�A2 ÿ Aa2�2 ÿ 2�A1 ÿ Aa1��A2 ÿ Aa2��g; �9�

where L is a normalizing factor and k � �e1e2 ÿ 1�.
A more instructive form of (9) is obtained by introducing

the relations

e1 � �1� �2
1�; e2 � �1� �2

2�:
We have

P�A1;A2jAa1;Aa2� � Lÿ1 expfÿ1=2kÿ1��A1 ÿ Aa1�
ÿ �A2 ÿ Aa2��2 ÿ 1=2kÿ1��2

2�A1 ÿ Aa1�2
� �2

1�A2 ÿ Aa2�2�g; �10�
where k � �2

1 � �2
2 � �2

1�
2
2.

Equation (10) suggests the following:

(a) The ®rst term in the exponential is maximized when

Aq1 � A1 ÿ Aa1 has the same sign and modulus as

Aq2 � A2 ÿ Aa2. The reader will ®nd this obvious if he or she

considers that Aq1 and Aq2 do not depend on the anomalous

scattering and therefore they are expected to be equal. The

formula con®rms this expectation and, at the same time, uses

the above condition as a lack-of-closure criterion.

(b) The second term in the exponential supports the

tendency of A1 and A2 to have the same signs as Aa1 and Aa2,

respectively (see x3): the tendency is regulated by the error

parameters �2
2 and �2

1 , respectively. Since �2
2 and �2

1 are usually

smaller than unity, the second term in the exponential is

usually negligible with respect to the ®rst one. Accordingly, the

additional wavelength dispersion data constitute a valuable

source of information with respect to the SAS case.

(c) Formula (10) supports the expectation that the differ-

ence �A1 ÿ Aa1�2 plays a more important role if the error on

�A2 ÿ Aa2�2 (say �2
2) is larger than �2

1 . The reciprocal is also

true.

(d) Since

��A1 ÿ Aa1� ÿ �A2 ÿ Aa2��2 � ��A1 ÿ A2� ÿ �Aa1 ÿ Aa2��2;
�11�

the distribution (10) clearly indicates the possible experi-

mental reasons for MAD failures. Indeed, the size of the term

(11) critically depends on the experimental errors related

to the estimates of the differences (|A1| ÿ |A2|) and

(|Aa1| ÿ |Aa2|), both of which are quite small quantities.

Let s1, s2, sa1, sa2 be the signs of A1, A2, Aa1, Aa2, respectively.

The sign probabilities can be derived by ®rst omitting from

(10) the terms that are insensitive to the signs:

P�A1;A2jAa1;Aa2� � Lÿ1 expfkÿ1�A1A2 � �A1 ÿ A2�
� �Aa1 ÿ Aa2� � �2

2A1Aa1 � �2
1A2Aa2�g;

�12�
then the marginal probability

P�s1jAa1;Aa2� �
P

s2��1

P�s1; s2jAa1;Aa2�

is derived, and ®nally the conclusive expression is obtained:

P�s1 � sa1jAa1;Aa2�
� �1� P�s1 � ÿsa1jAa1;Aa2�=P�s1 � sa1jAa1;Aa2��ÿ1:

�13�
A simpler but robust expression may be obtained by observing

that A1 and A2 will mostly have the same sign s1. If the

probability that they have opposite sign is considered

vanishing, the product (A1A2) can be omitted from (12).

Then,

�A1 ÿ A2��Aa1 ÿ Aa2� � s1�jA1j ÿ jA2j��Aa1 ÿ Aa2�
and

P�s � sa1jAa1;Aa2� � 0:5� 0:5 tanhfkÿ1�s1�12�Aa1 ÿ Aa2�
� �2

2 jA1Aa1j�g; �14a�
where

�12 � jA1j ÿ jA2j:
Equations (13) and (14a) are the conclusive formulas for the

two-wavelength case.

As before underlined, the ®rst term in the tanh argument is

more important than the second, owing to the usually quite

small value of �2
1 (and �2

2). If �f 01 and �f 02 have the same sign

then

Aa1 ÿ Aa2 � sa1�jAa1j ÿ jAa2j� � sa1�a12;

and (14a) reduces to the simpler expression

P�s1 � sa1jAa1;Aa2� � 0:5� 0:5 tanhfkÿ1��12�a12

� �2
2�jA1Aa1j��g; �14b�

which mostly relies on the sign of the product �12�a12.

Usually, �2
i � 1: accordingly, we can introduce the

approximation

K � �2
1 � �2

2 � �2
1�

2
2 � �2

1 � �2
2

and simply express (14b) in terms of structure factors:

P�s1 � sa1jAF
a1;AF

a2� � 0:5� 0:5 tanhf�h�2
1i � h�2

2i�ÿ1

� ��F
12�

F
a12 � h�2

2ijAF
a1AF

a2j=�N �g;
where �F

12 � jAF
1 j ÿ jAF

2 j, �F
a12 � jAF

a1j ÿ jAF
a2j and AF

i , AF
ai

are the real components of Fi and Fai.

Since the second term of the tanh arguments is often

negligible with respect to the ®rst one, we obtain

P�s1 � sa1jAF
a1;AF

a2� � 0:5� 0:5 tanhf�h�2
1i � h�2

2i�ÿ1�F
12�

F
a12g:

Some didactical cases are illustrated in Appendix A.

5. The n-wavelength case: the distribution
P(A1, . . . , An|Ea1, . . . , Ean)

The procedure described in x4 is now extended to the

n-wavelength case. The characteristic function of

P(A1, . . . , An|Ea1, . . . , Ean) is:



C�u1; . . . ; un� � exp�i�u1Aa1 � . . .� unAn��

� exp ÿ P
i

eiu
2
i � 2

P
i<j

uiuj

 !�
2

" #
:

Then,

P�A1; . . . ;AnjEa1; . . . ;Ean�

� �2��ÿn
R�1
ÿ1

. . .
R�1
ÿ1

exp ÿi
P

i

ui�Ai ÿ Aai�
� ��

ÿ�1=2� P
i

eiu
2
i � 2

P
i<j

uiuj

" #)
: �15�

Equation (15) may be rewritten in a shorter form as

P�AjEa� � �2��ÿn
R�1
ÿ1

. . .
R�1
ÿ1

exp�ÿi TUÿ 1=2UKU�;

where

T � ��A1 ÿ Aa1�; . . . ; �An ÿ Aan��;
U � �u1; . . . ; un�;

K �

e1 1 . . . 1

1 e2 . . . 1

..

. ..
. ..

. ..
.

1 1 . . . en

����������

����������
:

Then,

P�AjEa� � �2��ÿn=2�det�K��ÿ1=2 exp�ÿ1=2TKÿ1T� �16�
or, in a more explicit form,

P�AjEa� � �2��ÿn=2�det�K��ÿ1=2 exp ÿ1=2
P

i

�ii�Ai ÿ Aai�2
�

� 2
P
i<j

�ij�Ai ÿ Aai��Aj ÿ Aaj�
)
; �17�

where the �ij are the elements of the matrix Kÿ1. The value of

det(K) may be estimated by the relation

det

1� d1 1 . . . 1

1 1� d2 . . . 1

..

. ..
. ..

. ..
.

1 1 . . . 1� dn

����������

����������
� d1d2 . . . dn 1�Pn

i�1

�1=di�
� �

:

Accordingly, we have

det�K� � �2
1�

2
2 . . . �2

n 1�Pn
i�1

�1=�2
i �

� �
: �18�

It is easily veri®ed that (6) and (9) are special cases of (17). A

form generalizing (10) may be obtained after some algebraic

rearrangement of the terms in (17). We obtain:

P�AjEa� � �2��ÿn=2�det�K��ÿ1=2 exp ÿ1=2
P
i<j

�ij��Ai ÿ Aj�
(

ÿ�Aai ÿ Aaj��2 ÿ 1=2
P

i

Ri�Ai ÿ Aai�2
�
; �19�

where Ri �
Pn

i�1 �ij.

The sign probabilities may be derived as in x4. If we

assume that all the Ai's have the same sign s1, then

��Ai ÿ Aj��Aai ÿ Aaj�� � �s1�ij�Aai ÿ Aaj��;
where �ij � jAij ÿ jAjj and

P�s1 � sa1jEa� � 0:5� 0:5 tanh

�
ÿPn

j�2

�1j�s1�1j�Aa1 ÿ Aaj��

� R1jA1Aa1j
�
: �20�

If the �f 0j have the same sign, (20) reduces to

P�s1 � sa1jEa� � 0:5� 0:5 tanh

�
ÿPn

j�2

�1j��1j�a1j�

� R1jA1Aa1j
�
; �21�

where �a1j � jAa1j ÿ jAajj.
We now give the explicit expressions for the �1j

elements:

�1j � ÿ
Qn

p�2;p 6�j

��2
p�

" #�
�det�K��

� ÿ �2
1�

2
j 1�Pn

i�1

�1=�2
i �

� �� �ÿ1

for j 6� 1; �22�

�11 �
Qn
p�2

��2
p�

" #�
�det�K�� ÿPn

j�2

�1j;

R1 �
Qn
p�2

��2
p�

" #�
�det�K�� � �2

1 1�Pn
i�1

�1=�2
i �

� �� �ÿ1

: �23�

We note that, according to (23), �1j will have a small

modulus if �2
1 and �2

j are large enough (i.e. unreliable

measurements). Similarly, according to (23), a large value of

�2
1 would weaken the probability of the sign relationship

between A1 and Aa1.

For n � 3; 4 the �1j's are:

n � 3

det�K� � �2
1�

2
2�

2
3 � �2

1�
2
2 � �2

1�
2
3 � �2

2�
2
3

�11 � ��2
2�

2
3 � �2

2 � �2
3�=det�K�

�22 � ��2
1�

2
3 � �2

1 � �2
3�=det�K�

�33 � ��2
1�

2
2 � �2

1 � �2
2�=det�K�

�12 � ÿ�2
3=det�K�

�13 � ÿ�2
2=det�K�

�23 � ÿ�2
1=det�K�;
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n � 4

det�K� � �2
1�

2
2�

2
3�

2
4 � �2

1�
2
2�

2
3 � �2

1�
2
2�

2
4 � �2

1�
2
3�

2
4 � �2

2�
2
3�

2
4

�11 � ��2
2�

2
3�

2
4 � �2

2�
2
3 � �2

2�
2
4 � �2

3�
2
4�=det�K�

�22 � ��2
1�

2
3�

2
4 � �2

1�
2
3 � �2

1�
2
4 � �2

3�
2
4�=det�K�

..

.

�12 � ÿ�2
3�

2
4=det�K�

�13 � ÿ�2
2�

2
4=det�K�

..

.

6. The estimate of symmetry restricted phases

The formulas so far derived have been explicitly obtained for

the case P�1, but they may handle re¯ections with symmetry-

restricted phase values different from (0, �) without any

special modi®cation. For example, let us suppose that the

allowed phase values are ���=2;ÿ�=2�. In this case, A is the

component along the imaginary direction in the Gaussian

plane. We still retain the A and B de®nitions of xI.3 and we

can apply (20) provided the `observed' value of A is

jAj � �jEj2 ÿ jBaj2�1=2.

7. Experimental tests

To check the correctness of our mathematical approach, we

have applied the theory so far developed to the calculated

(without error) data of 1SRV (Walsh et al., 1999), space group

C2221, a � 63:470, b � 65:960, c � 75:030 AÊ . Multiwave-

length data were collected up to 1.70 AÊ resolution. The

expected �f 0 and f 00 values for each chosen � are shown in

Table 1. Structure factors were calculated for the 958 re¯ec-

tions with restricted phase values. To avoid singularities in

(14b) and (21), we assumed e � 1� �0:05jEcalcj2�. In Table 2,

we use �1 and �2 wavelengths. For each threshold value, we

give the number of re¯ections (Nr) for which G > ARG and

the percentage (%) of the correct sign estimates. G is the

modulus of the tanh argument in (14b). The two-wavelength

(ideal) case completely solves the phase problem. The errors

at very small values of G are exclusively rounding errors of the

calculations. The reader will note that the percentage of the

correct sign estimates does not depend on the value of G. This

is due to: (a) calculated data are used; (b) an unrealistic weight

is employed.

The simultaneous use of the four wavelengths has only the

effect of increasing the expected reliability of the phase esti-

mates (that is the G value): for shortness, the obvious result is

not shown.

8. Conclusions

A new probabilistic approach for handling the MAD case is

described, aiming at phasing structure factors under the

assumption that the anomalous-scatterer positions are entirely

known. The approach uses the technique of the joint prob-

ability distribution functions and provides simple and

Table 2
1SRV calculated data, centric re¯ections: number of re¯ections (Nr) for
which G > ARG and percentage (%) of the correct sign estimates.

G is the modulus of the tanh argument in equation (14b) when the two-
wavelength case is checked.

ARG Nr %

0.00 958 98.2
0.33 321 99.4
2.00 154 98.7
4.00 103 99.1
7.0 71 98.6

10 57 98.3

Table 1
Expected �f 0 and f 00 values for each chosen � value.

� (AÊ ) �f 0 f 00

1.1271 ÿ1.805 0.646
0.9793 ÿ8.582 3.843
0.9791 ÿ7.663 3.841
0.9465 ÿ2.618 3.578

Figure 1
(a) One-wavelength centric case. The sign of A1 is not de®ned by the prior
knowledge of Aa1; (b), (c), (d), (e) Four speci®c cases for a second
wavelength.



instructive formulas. The approach is quite general: it may also

be used to treat the case in which errors at different wave-

lengths are correlated (Terwillinger & Berendzen, 1997). This

only requires suitable coef®cients in the Gaussian component

of the characteristic function [see equation (8) for the two-

wavelength case].

Our next theoretical step will generalize the results for the

non-centrosymmetrical case. Since the accuracy of the phase

estimates depends on the accuracy of Aa and Ba, the practical

applications of our approach would require the integration of

our theoretical results with some of the current computer

programs for de®ning and re®ning the anomalous-scatterer

substructure.

APPENDIX A

In this Appendix, some geometrical considerations supporting

the results obtained via our probabilistic approach are

described.

The one-wavelength centric case may be summarized as in

Fig. 1(a). A1 is a non-directional segment of which we want to

determine the correct orientation, Aa1 is a vector with known

modulus and direction. Two possible solutions are available

for Aq1, with opposite directions (the restraint that |Aq � Aa1|

must be equal to |A1| holds). Consequently, both the alter-

natives are allowed for A1.

The sections (b), (c), (d), (e) of Fig. 1 represent four cases

for a second wavelength. We assume that �f 01�f 02 > 0 or, in

other words, that Aa1 has the same sign as Aa2. Each of the

four cases is marked by speci®c relations between the moduli

|Aj| and |Aaj|. If the �1 and the �2 cases are combined, a unique

solution is found, owing to the necessity that Aq1 � Aq2 in

modulus and sign. This is in perfect agreement with the main

term of the tanh argument in equation (14b).
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